HOME     STORE     BLOG     SCHEMATICS     TUTORIALS     DOWNLOADS     CONTACT
  Electronic Schematics
FM Transmitters
PLL Synthesizers
Stereo Encoders and Decoders
Antennas
FM Receivers
Audio / Amplifiers
Power Supplies
AC/DC Inverters AC/DC Converters
Battery Chargers
Remote Control
PC Related
Test and Measurement
PIC / ATMEL / AVR
USB Circuits
Telephone Related
LED
Miscellaneous Circuits
Stepper Motors
 Schematics  >> 

Page 11 of 17:  1  2  3  4  5  6  7  8  9  10 11 12  13  14  15  16  17

LM386 Audio Amplifier
This simple amplifier shows the LM386 in a high-gain configuration (A = 200). For a maximum gain of only 20, leave out the 10 uF connected from pin 1 to pin 8. Maximum gains between 20 and 200 may be realized by adding a selected resistor in series with the same 10 uF capacitor. The 10k potentiometer will give the amplifier a variable gain from zero up to the maximum.


LM386 Audio Amplifier
This project shows how to build an Audio amplifier based on LM386 IC. The circuit is very simple and construction is easy on a breadboard. The LM386 IC is unique in that the gain can be modified by changing Resistor R2 and Capacitor C2. This configuration will give us a gain of 20. By removing R2 and connecting C2 across pins 1 and 8, we can increase the gain to 200. It is important to understand that increasing the gain does not increase the output power. The increased gain is only used when a very low input signal is to be amplified. In a previous article I discussed building audio amplifiers using discrete transistors. While it is possible to build good audio amplifiers from discrete transistors, they are no match for the many audio amp IC's available to us. IC's offer many advantages including high efficiency, high gain, low standby current, low component count, small size and ,of course, low cost. It is little wonder that audio amp IC's have replaced discrete transistors in most consumer electronic devices. While many experimenters have stayed away from these little black mysteries, I am going to uncover some of their secrets and demonstrate how easy they are to use.


LM386 Utility Amplifier
It's always handy to have a little amp kicking around to trace audio signals, test mics, CD tape and TV audio outputs. You know, something that doesn't weigh a lot and isn't clumsy. There are tons of uses for this little circuit. There are a couple of versions of this amplifier chip. Both are 8 pin DIP packages and the difference between the two are apparent by their part numbers. Either are suited for this circuit provided the supply voltage does not exceed the recommended 5 to 12 volt DC range. Power output can range from about 325 mW to about 750 mW within this supply range when using an 8 ohm speaker. Power it with batteries or a small DC supply...why not solar cells or a little windmill generator?


LM3875 GAINCLONE
Gainclone is a single integrated circuit based on an operational amplifier (op amp) on a single substrate of silicon. The LM3875 is the "weapon of choice". This great chip, is a little larger than the size of a thumbnail and can deliver up to 56W RMS continuous with 100W peaks and it can do this at 0.05% distortion! Because they are DC amplifiers (DC coupling right through the amp) they can go all the way to 400kHz! The first chipamp I built was a pair of monoblocks. Though these are a little industrial looking, they deliver big time.


LM3875 Gainclone Amp
You read where the subjective reviewer tells of the equipment vanishing and revealing the music unfettered. Well for the first time with any of mine or anyone else's gear that this is what I hear. There are no speakers there is just the music. A soundstage projecting from the wall behind and from the sides fills the room (7 x 8 x 2.5 m) with clear detail and multilayer texture and complex timbres. The setup consists of a NAD C542 CD Player, DIY Cotton ConneX interconnects (similar to the DIY Silver Interconnect Cables but with cotton insulation), the Synergy LM3875 amp and small two-way bookshelf speakers. Speaker cables are twin runs of oxygen free copper cable. I expect the amp to improve over the next weeks but for now I am stunned!


LM3875 Gainclone Amplifier
Gainclone amplifiers have VERY few components and this one is based on the National Semiconductor LM3875 IC. The PCBs and components are very simple and quick to make, only took about 20 mins to assemble both amps and rectifier board. DC offset was about 80mV on one channel and about 40mV on the other. I used the optional Ci capacitor in the national datasheet for the IC which reduced it to between 0-4mV: This is the capacitor I chose, its an Elna Starget (expensive). The case was MUCH more time consuming and difficult to make though. I bought all the aluminium from a scrap metal yard including the heatsink. I got my aluminium panels cut at a sheet metal shop as I cant make straight cuts with a hack saw.


LM3875 Gainclone Power Amplifier
This is a basic design with a single LM3875TF chip per side, and one shared toroidal transformer. I will be making two of these amplifiers simultaneously but with a few critical component differences. One is based on standard components, and one on premium components. There was a lot of deliberation on the type of transformer to get, particularly the secondary voltages. The concern here is the target load as, generally speaking, the higher the voltage, the less suited it is to drive low impedance loads (4ohms). I settled on 20 volt secondaries which I think is a good compromise, feeling that 18v is perhaps a little too low and 22v a little too high to get the max with a 4 ohm load whilst minimising output loss if using 8 ohms. The ability to run stable at 4 ohms is paramount to me to keep it open to different applications, and output wattage is relatively unimportant for this design.


LM3875 Power Amplifier
The amp described on this page, is a very simple poweramp based on the National Semiconductor chip LM3875. According to National it's a chip meant for TVs, compact stereos etc. But many people claim that these chips are great high-end amps... So I decided to try building one. The "design" work was quickly done, as I just used the guidelines and sample circuit of the datasheet. I designed a small PCB for the amp (I'm lazy), and I made it double sided to make it easier to keep all the ground lines separate, as recommended by National. The prototype board can be seen below with a 100VA toroid I used for testing.


LM3876 Gainclone Amplifier
The amp is based on the Project 19 PCB, so uses a pair of LM3876 (or LM3886) power opamps, run from a ±35V supply. I used a cut-down P88 preamp PCB because I only wanted one preamplifier stage, but the entire board can also be used. Alternatively, the P19 amp can be run at higher gain than normal, alleviating the need for a preamp at all. The down side of this is that the noise level will be higher, and background noise may be audible with efficient speakers and/ or very quiet surroundings.


LM3886 Amplifier
When I fired it up for the first time, I was immediately surprised with how much power was available, the level of detail and the nice bass response. It sounded much better than I was expecting and much better than it should considering the simplicity and low cost. Initially, I thought it sounded a little bright, but after about 12 hours the sound became more relaxed.


Page 11 of 17:  1  2  3  4  5  6  7  8  9  10 11 12  13  14  15  16  17


Accurate LC Meter Capacitance Inductance Meter with 16F628 and LCD
Volt Ampere Meter with 16F876 Microcontroller and LCD display
 
Accurate LC Meter

Build your own Accurate LC Meter (Capacitance Inductance Meter) and start making your own coils and inductors. This LC Meter allows to measure incredibly small inductances making it perfect tool for making all types of RF coils and inductors. LC Meter can measure inductances starting from 10nH - 1000nH, 1uH - 1000uH, 1mH - 100mH and capacitances from 0.1pF up to 900nF. The circuit includes an auto ranging as well as reset switch and produces very accurate and stable readings.
PIC Volt Ampere Meter

Volt Ampere Meter measures voltage of 0-70V or 0-500V with 100mV resolution and current consumption 0-10A or more with 10mA resolution. The meter is a perfect addition to any power supply, battery chargers and other electronic projects where voltage and current must be monitored. The meter uses PIC16F876A microcontroller with 16x2 backlighted LCD.

50MHz 60MHz Frequency Meter / Counter with 16F628 & LCD
1Hz - 2MHz XR2206 Function Generator
60MHz Frequency Meter / Counter

Frequency Meter / Counter measures frequency from 10Hz to 60MHz with 10Hz resolution. It is a very useful bench test equipment for testing and finding out the frequency of various devices with unknown frequency such as oscillators, radio receivers, transmitters, function generators, crystals, etc.
1Hz - 2MHz XR2206 Function Generator

1Hz - 2MHz XR2206 Function Generator produces high quality sine, square and triangle waveforms of high-stability and accuracy. The output waveforms can be both amplitude and frequency modulated. Output of 1Hz - 2MHz XR2206 Function Generator can be connected directly to 60MHz Counter for setting precise frequency output.

BA1404 HI-FI Stereo FM Transmitter
USB IO Board PIC18F2455 / PIC18F2550
BA1404 HI-FI Stereo FM Transmitter

Be "On Air" with your own radio station! BA1404 HI-FI Stereo FM Transmitter broadcasts high quality stereo signal in 88MHz - 108MHz FM band. It can be connected to any type of stereo audio source such as iPod, Computer, Laptop, CD Player, Walkman, Television, Satellite Receiver, Tape Deck or other stereo system to transmit stereo sound with excellent clarity throughout your home, office, yard or camp ground.
USB IO Board

USB IO Board is a tiny spectacular little development board / parallel port replacement featuring PIC18F2455/PIC18F2550 microcontroller. USB IO Board is compatible with Windows / Mac OSX / Linux computers. When attached to Windows IO board will show up as RS232 COM port. You can control 16 individual microcontroller I/O pins by sending simple serial commands. USB IO Board is self-powered by USB port and can provide up to 500mA for electronic projects. USB IO Board is breadboard compatible.

ESR Meter / Transistor Tester Kit
Audiophile Headphone Amplifier Kit
 
ESR Meter / Capacitance / Inductance / Transistor Tester Kit

ESR Meter kit is an amazing multimeter that measures ESR values, capacitance (100pF - 20,000uF), inductance, resistance (0.1 Ohm - 20 MOhm), tests many different types of transistors such as NPN, PNP, FETs, MOSFETs, Thyristors, SCRs, Triacs and many types of diodes. It also analyzes transistor's characteristics such as voltage and gain. It is an irreplaceable tool for troubleshooting and repairing electronic equipment by determining performance and health of electrolytic capacitors. Unlike other ESR Meters that only measure ESR value this one measures capacitor's ESR value as well as its capacitance all at the same time.
Audiophile Headphone Amplifier Kit

Audiophile headphone amplifier kit includes high quality audio grade components such as Burr Brown OPA2134 opamp, ALPS volume control potentiometer, Ti TLE2426 rail splitter, Ultra-Low ESR 220uF/25V Panasonic FM filtering capacitors, High quality WIMA input and decoupling capacitors and Vishay Dale resistors. 8-DIP machined IC socket allows to swap OPA2134 with many other dual opamp chips such as OPA2132, OPA2227, OPA2228, dual OPA132, OPA627, etc. Headphone amplifier is small enough to fit in Altoids tin box, and thanks to low power consumption may be supplied from a single 9V battery.
 

Arduino Prototype Kit
RF Remote Control 433MHz Four Channel
 
Arduino Prototype Kit

Arduino Prototype is a spectacular development board fully compatible with Arduino Pro. It's breadboard compatible so it can be plugged into a breadboard for quick prototyping, and it has VCC & GND power pins available on both sides of PCB. It's small, power efficient, yet customizable through onboard 2 x 7 perfboard that can be used for connecting various sensors and connectors. Arduino Prototype uses all standard through-hole components for easy construction, two of which are hidden underneath IC socket. Board features 28-PIN DIP IC socket, user replaceable ATmega328 microcontroller flashed with Arduino bootloader, 16MHz crystal resonator and a reset switch. It has 14 digital input/output pins (0-13) of which 6 can be used as PWM outputs and 6 analog inputs (A0-A5). Arduino sketches are uploaded through any USB-Serial adapter connected to 6-PIN ICSP female header. Board is supplied by 2-5V voltage and may be powered by a battery such as Lithium Ion cell, two AA cells, external power supply or USB power adapter.
200m 4-Channel 433MHz Wireless RF Remote Control

Having the ability to control various appliances inside or outside of your house wirelessly is a huge convenience, and can make your life much easier and fun. RF remote control provides long range of up to 200m / 650ft and can find many uses for controlling different devices, and it works even through the walls. You can control lights, fans, AC system, computer, printer, amplifier, robots, garage door, security systems, motor-driven curtains, motorized window blinds, door locks, sprinklers, motorized projection screens and anything else you can think of.
 
  Latest Schematics
FM Transmitter with Booster
TDA7000 FM Radio Receiver with LM386 Amplifier
BA1404 Stereo FM Transmitter with Booster
Portable Variable Bench Power Supply 1-32V 0-5A
1 Watt FM Transmitter Booster
Arduino DCC Decoder
Simplest FM Receiver
7W FM Transmitter
Simple Stereo FM Transmitter using an AVR Microcontroller
Stereo FM Receiver
Simple DIY FM Transmitter
50W Power Amplifier with LM3886
BLF147 150W VHF Amplifier
Fully Adjustable Power Supply
Stereo FM Transmitter with BA1404 IC
High Performance Stereo Audio Amplifier using LM3886
1Km FM Transmitter with UA741 Opamp
Easy Crystal Locked FM Transmitter
Adjustable Delay Circuit
DIY Adjustable Bench Power Supply
BA1404 FM Stereo Transmitter with Amplifier
LM350 3A Adjustable Voltage Regulator
1 Watt FM Amplifier
TDA2050 Stereo Audio Power Amplifier
DIY Walkie Talkie
5km FM Transmitter
Bench Lab Power Supply 0-50V 0-5A
Tiny FM Transmitter
3V One Transistor FM Transmitter
FM Music Transmitter

Electronics-DIY.com © 2002-2024. All Rights Reserved.