HOME     STORE     BLOG     SCHEMATICS     TUTORIALS     DOWNLOADS     CONTACT

Build A 9 dB, 70cm, Collinear Antenna From Coax
 
Build A 9 dB, 70cm, Collinear Antenna From Coax


 

Build A 9 dB, 70cm, Collinear Antenna From Coax

 


Recently the RASON technical committee was hard at work at the repeater site repairing our 2 meter repeater antenna. One of the members commented to me that I should write an article about collinear arrays so that we could all build our own. While it is not always feasible to home-brew a commercial quality antenna designed to take hurricane force winds, it is very feasible to built a collinear antenna for average use. This article describes a collinear antenna made from very inexpensive RG58/U coaxial cable and encased in PVC pipe. Before we start building we need to cover some ground about the characteristics of coaxial cable. First remember that there is something called the velocity factor for coaxial cable. For RG58/U coax it is typically .66. This means that when we calculate the length of ½ wavelength in free space we need to adjust its size by multiplying it by the velocity factory. Simply put, RF slows down by the velocity factor when traveling through coaxial cable. All that aside now, lets calculate the ½ wavelength of RG58/U coaxial cable with a frequency of 444 Megahertz.


Build A 9 dB, 70cm, Collinear Antenna From Coax

½ wavelength of coax = 300 / F / 2 * V

Where F = Frequency in Megahertz

V = Velocity factory of Coax

300 / 444 / 2 * .66 = .2229 meters or 223 millimeters

To allow for cutting the ends of our coax, we will need to add 8 millimeters to each ½ wave length for a total of 231 millimeters.

To get started, we will need 8 half wave lengths (231 millimeters) of RG58/U coaxial cable to be cut and connected in the manner shown in Figure 1. First cut back 4 millimeters of the outer jacket, braid and dielectric exposing the center conductor as in Figure 2. Now cut back the outer jacket another 4 millimeters to expose the braid and push the braid back about a millimeter to prevent it from shorting with the center conductor. It is best to lightly tin the braid with solder at this point. Now solder each half wavelength as shown in Figure 1. Attach a few feet of RG58/U to the bottom of the array as in Figure 1 for feeding the antenna.

Now its time to add the additional elements to the top and bottom of the collinear array. First add a ¼ wave element to the top of the antenna as shown in Figure 3. Use #16 solid wire or similar and solder it to the center conductor only. The length of the ¼ wave element is calculated as follows:

1/4 wavelength radiator = 300 / F / 4

Where F = Frequency in Megahertz

300 / 444 / 4 = .1689 meters or 169 millimeters

At the bottom of the array we will slide a 5/16 inch aluminum tube over the coax and crimp it to the braid of the antenna feed point only. If copper is used, it is okay to solder. The length of the tube is calculated as follows:

¼ wavelength of tubing = 300 / F / 4 * V

Where F = Frequency in Megahertz

V = Velocity factory of Tubing. (Use .95 for 5/16" tubing)

300 / 444 / 4 * .95 = .1604 meters or 160 millimeters

Because a collinear antenna is hot with RF along the shield of the coax, it is necessary to prevent the RF from coming back through the coax. Slide three FT50-43 or almost any similar sized toroids over the bottom end of the coax as shown in Figure 3. The toroids should be placed about ½ wave length from the bottom of the array. Use the same formula for calculating a half wave length of coax. If you prefer, apply RF to the antenna at this point and slide the toroids up and down until minimum SWR is found. Tape the toroids to the proper point on the coax using electrical tape or similar means.

After completing the basic assembly of the collinear antenna, apply a small amount of RF with the antenna on the floor or ground. Relatively low SWR should be observed at this point. The SWR will be much lower once the antenna is mounted in the air. If the SWR is greater than 2 to 1 across the entire band, a connection may separated or a short occurred. It will be necessary to correct the problem before proceeding. After good SWR is obtained, place heat shrink tubing along all connections or wrap tightly with electrical tape.

For final mounting, attach the antenna to a ¼" wooden dowel using tie wraps about every 3 inches. It may not be possible to obtain a wooden dowel for the complete length so attach two dowels together by using a 1 inch sleeve of 5/16" tubing and crimping the tubing at each end. Check SWR again to insure that no connections have separated or shorted. Carefully insert the coax and dowel assembly into several feet of ¾" PVC pipe for final mounting. Because of the tie wraps, it is not necessary to use spacers but may be necessary if larger size piping is used. Drill a hole for the coax at the bottom end cap and place an end cap on the top of the PVC. Do not cement end caps until the SWR has been doubled checked. Cement end caps and water proof coax opening on the bottom. Use whatever type of coaxial connector is desired on the bottom of the coax end but do not use RG58/U for your complete feed line. Use a low loss coax such as RG8/U for the main feed line to the transceiver. Don't forget to water proof all coax connectors.

If the eight ½ wave coaxial elements result in an antenna too long for your liking (over seven feet), then it is okay to use four ½ wave coaxial elements but the SWR may be slightly higher (Attach four ¼ wave vertical ground radials at the antenna feed point to help lower SWR.). If 9 dB gain is still not enough for you then increase the number of coax elements from eight to sixteen. You will probably need to attach guy lines to the antenna. Although only a 70 CM antenna was described in this article, the formulas can be easily calculated for the 6 meter, 2 meter or 1¼ meter bands. Millimeters were used for many of the measurements but can be converted to inches by dividing millimeters by 25.4 for those who are not familiar with the metric system. After installing one of these antennas, be prepared to hear stations and repeaters that you never heard before.


Build A 9 dB, 70cm, Collinear Antenna From Coax






Accurate LC Meter Capacitance Inductance Meter with 16F628 and LCD
Volt Ampere Meter with 16F876 Microcontroller and LCD display
 
Accurate LC Meter

Build your own Accurate LC Meter (Capacitance Inductance Meter) and start making your own coils and inductors. This LC Meter allows to measure incredibly small inductances making it perfect tool for making all types of RF coils and inductors. LC Meter can measure inductances starting from 10nH - 1000nH, 1uH - 1000uH, 1mH - 100mH and capacitances from 0.1pF up to 900nF. The circuit includes an auto ranging as well as reset switch and produces very accurate and stable readings.
PIC Volt Ampere Meter

Volt Ampere Meter measures voltage of 0-70V or 0-500V with 100mV resolution and current consumption 0-10A or more with 10mA resolution. The meter is a perfect addition to any power supply, battery chargers and other electronic projects where voltage and current must be monitored. The meter uses PIC16F876A microcontroller with 16x2 backlighted LCD.

50MHz 60MHz Frequency Meter / Counter with 16F628 & LCD
1Hz - 2MHz XR2206 Function Generator
60MHz Frequency Meter / Counter

Frequency Meter / Counter measures frequency from 10Hz to 60MHz with 10Hz resolution. It is a very useful bench test equipment for testing and finding out the frequency of various devices with unknown frequency such as oscillators, radio receivers, transmitters, function generators, crystals, etc.
1Hz - 2MHz XR2206 Function Generator

1Hz - 2MHz XR2206 Function Generator produces high quality sine, square and triangle waveforms of high-stability and accuracy. The output waveforms can be both amplitude and frequency modulated. Output of 1Hz - 2MHz XR2206 Function Generator can be connected directly to 60MHz Counter for setting precise frequency output.

BA1404 HI-FI Stereo FM Transmitter
USB IO Board PIC18F2455 / PIC18F2550
BA1404 HI-FI Stereo FM Transmitter

Be "On Air" with your own radio station! BA1404 HI-FI Stereo FM Transmitter broadcasts high quality stereo signal in 88MHz - 108MHz FM band. It can be connected to any type of stereo audio source such as iPod, Computer, Laptop, CD Player, Walkman, Television, Satellite Receiver, Tape Deck or other stereo system to transmit stereo sound with excellent clarity throughout your home, office, yard or camp ground.
USB IO Board

USB IO Board is a tiny spectacular little development board / parallel port replacement featuring PIC18F2455/PIC18F2550 microcontroller. USB IO Board is compatible with Windows / Mac OSX / Linux computers. When attached to Windows IO board will show up as RS232 COM port. You can control 16 individual microcontroller I/O pins by sending simple serial commands. USB IO Board is self-powered by USB port and can provide up to 500mA for electronic projects. USB IO Board is breadboard compatible.

ESR Meter / Transistor Tester Kit
Audiophile Headphone Amplifier Kit
 
ESR Meter / Capacitance / Inductance / Transistor Tester Kit

ESR Meter kit is an amazing multimeter that measures ESR values, capacitance (100pF - 20,000uF), inductance, resistance (0.1 Ohm - 20 MOhm), tests many different types of transistors such as NPN, PNP, FETs, MOSFETs, Thyristors, SCRs, Triacs and many types of diodes. It also analyzes transistor's characteristics such as voltage and gain. It is an irreplaceable tool for troubleshooting and repairing electronic equipment by determining performance and health of electrolytic capacitors. Unlike other ESR Meters that only measure ESR value this one measures capacitor's ESR value as well as its capacitance all at the same time.
Audiophile Headphone Amplifier Kit

Audiophile headphone amplifier kit includes high quality audio grade components such as Burr Brown OPA2134 opamp, ALPS volume control potentiometer, Ti TLE2426 rail splitter, Ultra-Low ESR 220uF/25V Panasonic FM filtering capacitors, High quality WIMA input and decoupling capacitors and Vishay Dale resistors. 8-DIP machined IC socket allows to swap OPA2134 with many other dual opamp chips such as OPA2132, OPA2227, OPA2228, dual OPA132, OPA627, etc. Headphone amplifier is small enough to fit in Altoids tin box, and thanks to low power consumption may be supplied from a single 9V battery.
 

Arduino Prototype Kit
RF Remote Control 433MHz Four Channel
 
Arduino Prototype Kit

Arduino Prototype is a spectacular development board fully compatible with Arduino Pro. It's breadboard compatible so it can be plugged into a breadboard for quick prototyping, and it has VCC & GND power pins available on both sides of PCB. It's small, power efficient, yet customizable through onboard 2 x 7 perfboard that can be used for connecting various sensors and connectors. Arduino Prototype uses all standard through-hole components for easy construction, two of which are hidden underneath IC socket. Board features 28-PIN DIP IC socket, user replaceable ATmega328 microcontroller flashed with Arduino bootloader, 16MHz crystal resonator and a reset switch. It has 14 digital input/output pins (0-13) of which 6 can be used as PWM outputs and 6 analog inputs (A0-A5). Arduino sketches are uploaded through any USB-Serial adapter connected to 6-PIN ICSP female header. Board is supplied by 2-5V voltage and may be powered by a battery such as Lithium Ion cell, two AA cells, external power supply or USB power adapter.
200m 4-Channel 433MHz Wireless RF Remote Control

Having the ability to control various appliances inside or outside of your house wirelessly is a huge convenience, and can make your life much easier and fun. RF remote control provides long range of up to 200m / 650ft and can find many uses for controlling different devices, and it works even through the walls. You can control lights, fans, AC system, computer, printer, amplifier, robots, garage door, security systems, motor-driven curtains, motorized window blinds, door locks, sprinklers, motorized projection screens and anything else you can think of.
 

Electronics-DIY.com © 2002-2024. All Rights Reserved.