HOME     STORE     BLOG     SCHEMATICS     TUTORIALS     DOWNLOADS     CONTACT

2-Channel IR Relay Controller
 


 

2-Channel IR Relay Controller

 


This project is a 2 channel infrared (IR) remote controlled relay driver with power saving. It works with 12-bit SIRC IR signals as used by Sony remote controls. The board uses Microchip's low cost PIC10F200 microcontroller along with a handful of easy to find components making this possibly the lowest cost remote controlled relay driver around.


2-Channel IR Relay Controller

The controller also features a power save feature which reduces the relay holding voltage to 50% of the relays nominal operating voltage once the relay has switched on.

Circuit Description

The board requires a 12 volt DC supply input. This is fed through diode D5 which provides protection from a reversed connection of the power supply. Capacitor C2 is used for decoupling the supply. The 5 volt supply needed by the microcontroller U1 and the IR receiver U2 is generated using a simple zener shunt regulator comprising R6 and the 5.1 volt Zener diode D4.

The relays are switched on by microcontroller U1 via driver transistors Q1 and Q4. These are low power NPN transistors, in this case BC547 but virtually any small NPN transistor will work here as they only need to switch around 30mA - BC548 or BC549 would also work well. Diodes D1 and D2 provide protection for the transistors against the back EMF voltage transient when the relays are switched off.

The controller also features a power saving control which reduces the power consumption of the relays by around 50% when they are on. Relays of the type used here typically need 75% of their nominal voltage to "pull-in", once on they will 'hold' with a lower voltage. The datasheet for the Omron G5LE for example shows a must release voltage of 10% of rated voltage - for a 12V relay that's around 1.2V. This circuit uses a holding voltage of around 50% or 6 Volts.

Normally the supply voltage is fed to the relay coils via zener diode D3 which drops 5.1 volts leaving around 6 volts across the relay coil. In parallel with D3 is transistor Q2. When this transistor is switched on, it bypasses D3 and provides the full supply voltage to the relays. This 'boost' voltage is switched by the microcontroller with Q2 being switched on via Q3. The firmware in the microcontroller detects when a relay is being turned on and applies the boost for a minimum of around 100mS, again the datasheet for the relays gives typical operate time of 10mS, so the 100mS boost guarantees the relay will pull-in before the voltage is reduced. If you find the relay used doesn't hold fully swap D3 for a 4.7 volt zener.

LEDs 1 and 2 are connected across the relay coils to give visual indication when the relays are on and can be omitted if not required.

The circuit is controlled by U1, a PIC10F200, the smallest and cheapest PIC available from Microchip. The IR signal is detected and demodulated by U2 a TSOP4838 IR receiver IC. This part was chosen because it has a low supply current requirement - typically around 1.5mA - making it ideal for use with the shunt regulator. The output from the TSOP4838 is active low, when a signal is received the output goes to 0V, when no signal is received it is pulled high by an internal pull-up resistor. The signal is decoded using the firmware programmed into the PIC10F200. This has been written to decode the 12-bit SIRC protocol (see download section)


2-Channel IR Relay Controller


2-Channel IR Relay Controller


2-Channel IR Relay Controller

2-Channel IR Relay Controller





Accurate LC Meter Capacitance Inductance Meter with 16F628 and LCD
Volt Ampere Meter with 16F876 Microcontroller and LCD display
 
Accurate LC Meter

Build your own Accurate LC Meter (Capacitance Inductance Meter) and start making your own coils and inductors. This LC Meter allows to measure incredibly small inductances making it perfect tool for making all types of RF coils and inductors. LC Meter can measure inductances starting from 10nH - 1000nH, 1uH - 1000uH, 1mH - 100mH and capacitances from 0.1pF up to 900nF. The circuit includes an auto ranging as well as reset switch and produces very accurate and stable readings.
PIC Volt Ampere Meter

Volt Ampere Meter measures voltage of 0-70V or 0-500V with 100mV resolution and current consumption 0-10A or more with 10mA resolution. The meter is a perfect addition to any power supply, battery chargers and other electronic projects where voltage and current must be monitored. The meter uses PIC16F876A microcontroller with 16x2 backlighted LCD.

50MHz 60MHz Frequency Meter / Counter with 16F628 & LCD
1Hz - 2MHz XR2206 Function Generator
60MHz Frequency Meter / Counter

Frequency Meter / Counter measures frequency from 10Hz to 60MHz with 10Hz resolution. It is a very useful bench test equipment for testing and finding out the frequency of various devices with unknown frequency such as oscillators, radio receivers, transmitters, function generators, crystals, etc.
1Hz - 2MHz XR2206 Function Generator

1Hz - 2MHz XR2206 Function Generator produces high quality sine, square and triangle waveforms of high-stability and accuracy. The output waveforms can be both amplitude and frequency modulated. Output of 1Hz - 2MHz XR2206 Function Generator can be connected directly to 60MHz Counter for setting precise frequency output.

BA1404 HI-FI Stereo FM Transmitter
USB IO Board PIC18F2455 / PIC18F2550
BA1404 HI-FI Stereo FM Transmitter

Be "On Air" with your own radio station! BA1404 HI-FI Stereo FM Transmitter broadcasts high quality stereo signal in 88MHz - 108MHz FM band. It can be connected to any type of stereo audio source such as iPod, Computer, Laptop, CD Player, Walkman, Television, Satellite Receiver, Tape Deck or other stereo system to transmit stereo sound with excellent clarity throughout your home, office, yard or camp ground.
USB IO Board

USB IO Board is a tiny spectacular little development board / parallel port replacement featuring PIC18F2455/PIC18F2550 microcontroller. USB IO Board is compatible with Windows / Mac OSX / Linux computers. When attached to Windows IO board will show up as RS232 COM port. You can control 16 individual microcontroller I/O pins by sending simple serial commands. USB IO Board is self-powered by USB port and can provide up to 500mA for electronic projects. USB IO Board is breadboard compatible.

ESR Meter / Transistor Tester Kit
Audiophile Headphone Amplifier Kit
 
ESR Meter / Capacitance / Inductance / Transistor Tester Kit

ESR Meter kit is an amazing multimeter that measures ESR values, capacitance (100pF - 20,000uF), inductance, resistance (0.1 Ohm - 20 MOhm), tests many different types of transistors such as NPN, PNP, FETs, MOSFETs, Thyristors, SCRs, Triacs and many types of diodes. It also analyzes transistor's characteristics such as voltage and gain. It is an irreplaceable tool for troubleshooting and repairing electronic equipment by determining performance and health of electrolytic capacitors. Unlike other ESR Meters that only measure ESR value this one measures capacitor's ESR value as well as its capacitance all at the same time.
Audiophile Headphone Amplifier Kit

Audiophile headphone amplifier kit includes high quality audio grade components such as Burr Brown OPA2134 opamp, ALPS volume control potentiometer, Ti TLE2426 rail splitter, Ultra-Low ESR 220uF/25V Panasonic FM filtering capacitors, High quality WIMA input and decoupling capacitors and Vishay Dale resistors. 8-DIP machined IC socket allows to swap OPA2134 with many other dual opamp chips such as OPA2132, OPA2227, OPA2228, dual OPA132, OPA627, etc. Headphone amplifier is small enough to fit in Altoids tin box, and thanks to low power consumption may be supplied from a single 9V battery.
 

Arduino Prototype Kit
RF Remote Control 433MHz Four Channel
 
Arduino Prototype Kit

Arduino Prototype is a spectacular development board fully compatible with Arduino Pro. It's breadboard compatible so it can be plugged into a breadboard for quick prototyping, and it has VCC & GND power pins available on both sides of PCB. It's small, power efficient, yet customizable through onboard 2 x 7 perfboard that can be used for connecting various sensors and connectors. Arduino Prototype uses all standard through-hole components for easy construction, two of which are hidden underneath IC socket. Board features 28-PIN DIP IC socket, user replaceable ATmega328 microcontroller flashed with Arduino bootloader, 16MHz crystal resonator and a reset switch. It has 14 digital input/output pins (0-13) of which 6 can be used as PWM outputs and 6 analog inputs (A0-A5). Arduino sketches are uploaded through any USB-Serial adapter connected to 6-PIN ICSP female header. Board is supplied by 2-5V voltage and may be powered by a battery such as Lithium Ion cell, two AA cells, external power supply or USB power adapter.
200m 4-Channel 433MHz Wireless RF Remote Control

Having the ability to control various appliances inside or outside of your house wirelessly is a huge convenience, and can make your life much easier and fun. RF remote control provides long range of up to 200m / 650ft and can find many uses for controlling different devices, and it works even through the walls. You can control lights, fans, AC system, computer, printer, amplifier, robots, garage door, security systems, motor-driven curtains, motorized window blinds, door locks, sprinklers, motorized projection screens and anything else you can think of.
 

Electronics-DIY.com © 2002-2024. All Rights Reserved.