HOME     STORE     BLOG     SCHEMATICS     TUTORIALS     DOWNLOADS     CONTACT
  Electronic Schematics
FM Transmitters
PLL Synthesizers
Stereo Encoders and Decoders
Antennas
FM Receivers
Audio / Amplifiers
Power Supplies
AC/DC Inverters AC/DC Converters
Battery Chargers
Remote Control
PC Related
Test and Measurement
PIC / ATMEL / AVR
USB Circuits
Telephone Related
LED
Miscellaneous Circuits
Stepper Motors
 Schematics  >> 

Page 8 of 9:  1  2  3  4  5  6  7 8 9

Temperature Control using a DS1621 Sensor and a ATtiny 2313 Micrcontroller
This circuit uses a Dallas DS1621 temperature sensor which indicates the temperature of the device. The temperature sensor has an thermal alarm output, which becomes high when the temperature of the device exceeds a user defined value. When the temperature drops below a user defined value, the alarm output becomes low. In this way any amount of hysteresis can be programmed. The values are stored in a special register of the device that is nonvolatile. The signal of the alarm output is amplified by a BC557 PNP transistor, that drives a relay that can switch a heater element or a blower on or off. The temperature settings and readings are communicated to/from the device over a simple 2-wire serial interface. An ATMEL 90S2313 microcontroller controls the serial communication to/from the DS1621.The microcontroller also controls three LED, only one of the LED's is on when the temperature is within a certain range. The range of the temperature in which the LED's are on can be set by the user in the program code. The circuit needs to be powered by a 5V power supply, which can be obtained from a wall-wart.


Temperature Controlled Fan
With this simple circuit you will be able to control the speed of a DC fan according to temperature measured by a temp sensor. It’s an ideal add-on for your PC cooling fans to eliminate produced noise. Requested by some correspondents, this simple design allows an accurate speed control of 12V dc fan motors, proportional to temperature. A n.t.c. Thermistor (R1) is used as temperature sensor, driving two directly coupled complementary transistors wired in a dc feedback circuit. An optional circuitry was added to remotely monitor fan operation and to allow some sort of rough speed indication by means of the increasing brightness of a LED.


Thermal Fan Controller
The controller uses one or more ordinary silicon diodes as a sensor, and uses a cheap opamp as the amplifier. I designed this circuit to use 12V computer fans, as these are now very easy to get cheaply. These fans typically draw about 200mA when running, so a small power transistor will be fine as the switch. I used a BD140 (1A, 6.5W), but almost anything you have to hand will work just as well.


Thermostat Controller with Relay using LM35 and TL431
Here is a simple yet highly accurate thermal control circuit which can be used in applications where automatic temperature control is needed. The circuit switches a miniature relay ON or OFF according to the temperature detected by the single chip temperature sensor LM35DZ. When the LM35DZ detects a temperature higher than the preset level (set by VR1), the relay is actuated. When the temperature falls below the preset temperature, relay is de-energized. The circuit can be powered by any AC or DC 12V supply or battery (100mA min.)


Transistor Tester
Here is a very simple circuit that can b e used to check the hfe of transistors. Both PNP and NPN transistors can be checked using this circuit. Hfe as high as 1000 can be measured by using this circuit.The circuit is based on two constant current sources build around transistors Q1 and Q2.The Q1 is a PNP transistor and the constant current flows in the emitter lead. The value of constant current can be given by the equation; (V D1 -0.6)/ (R2+R4).The POT R4 can be adjusted to get a constant current of 10uA.


Ultrasonic Parking Assistant
The basic theory behind the Parking Assistant is the Sound Navigation and Ranging (SONAR) technique that is used for finding the distance and direction of a remote object underwater by transmitting sound waves and detecting reflections from it. First, a series of short ultrasonic pulses are transmitted using a transducer that changes voltage into sound waves. The transmitted pulse is reflected off an object, and the reflected wave is then received by another transducer that converts sound waves into voltage. The transmitted signal is also known as the ‘ping’ and the received signal is known as the ‘pong’. By counting the elapsed time between the ping and the pong, the distance between the device and an object can be easily calculated by multiplying the elapsed time with the speed of sound.


Ultrasonic Pest Repellent
It is well know that pests like rats, mice etc are repelled by ultrasonic frequency in the range of 30 kHz to 50 kHz. Human beings can’t hear these high-frequency sounds. Unfortunately, all pests do not react at the same ultrasonic frequency. While some pests get repelled at 35 kHz, some others get repelled at 38 to 40 kHz. Thus to increase the effectiveness, frequency of ultrasonic oscillator has to be continuously varied between certain limits. By using this circuit design, frequency of emission of ultrasonic sound is continuously varied step-by-step automatically.


USB Servo
The USB-Servo is a device to control a servo via USB. A servo is a motorized device that is commonly used in remote controlled cars and planes. I built this device to activate a toy puppet. The puppet has a button on its bottom, if you press the button the puppet collapses. When the computer is able to press the button, I can use the puppet to signal information like someone's online-state in the Jabber-network: when my friend goes online, the puppet stands up, when he logs off it collapses.

Servos are connected with three-wire-cables. A red and a black one for the power, and a yellow one for the signal. Power has to be between 4.8 and 6 volts, so the 5 volts from the USB-port is in the range. The signal doesn't take much current, so you can connect it directly to the controller. The angle of the servo is controlled with pulse width modulation (PWM). It gets a signal of about 50Hz (one pulse every 20ms), the length of the pulse tells the servo the angle to adjust.


Using an Optocoupler
An opto-coupler is a device that can be used to electrically isolate two circuits, so that a voltage spike or other problem on one side will not destroy the circuit on the other side. A common use for them is when you want to interface a computer to an AC-powered device, such as a light or a motor. Usually, the opto-coupler will not be used to control the device directly, and instead will just transfer a signal from one circuit to another.


Using HSR312 / HSR412 Solid State Relays
The HSR312 and HSR412 devices consist of a AlGaAs infrared emitting diode optically coupled to a power MOSFET detector which is driven by a photovoltaic generator. The devices are housed in a 6-pin dual-in-line package. The HSR312L and HSR412L employ an active current limit circuitry enabling the device to withstand current surge transients.


Page 8 of 9:  1  2  3  4  5  6  7 8 9


Accurate LC Meter Capacitance Inductance Meter with 16F628 and LCD
Volt Ampere Meter with 16F876 Microcontroller and LCD display
 
Accurate LC Meter

Build your own Accurate LC Meter (Capacitance Inductance Meter) and start making your own coils and inductors. This LC Meter allows to measure incredibly small inductances making it perfect tool for making all types of RF coils and inductors. LC Meter can measure inductances starting from 10nH - 1000nH, 1uH - 1000uH, 1mH - 100mH and capacitances from 0.1pF up to 900nF. The circuit includes an auto ranging as well as reset switch and produces very accurate and stable readings.
PIC Volt Ampere Meter

Volt Ampere Meter measures voltage of 0-70V or 0-500V with 100mV resolution and current consumption 0-10A or more with 10mA resolution. The meter is a perfect addition to any power supply, battery chargers and other electronic projects where voltage and current must be monitored. The meter uses PIC16F876A microcontroller with 16x2 backlighted LCD.

50MHz 60MHz Frequency Meter / Counter with 16F628 & LCD
1Hz - 2MHz XR2206 Function Generator
60MHz Frequency Meter / Counter

Frequency Meter / Counter measures frequency from 10Hz to 60MHz with 10Hz resolution. It is a very useful bench test equipment for testing and finding out the frequency of various devices with unknown frequency such as oscillators, radio receivers, transmitters, function generators, crystals, etc.
1Hz - 2MHz XR2206 Function Generator

1Hz - 2MHz XR2206 Function Generator produces high quality sine, square and triangle waveforms of high-stability and accuracy. The output waveforms can be both amplitude and frequency modulated. Output of 1Hz - 2MHz XR2206 Function Generator can be connected directly to 60MHz Counter for setting precise frequency output.

BA1404 HI-FI Stereo FM Transmitter
USB IO Board PIC18F2455 / PIC18F2550
BA1404 HI-FI Stereo FM Transmitter

Be "On Air" with your own radio station! BA1404 HI-FI Stereo FM Transmitter broadcasts high quality stereo signal in 88MHz - 108MHz FM band. It can be connected to any type of stereo audio source such as iPod, Computer, Laptop, CD Player, Walkman, Television, Satellite Receiver, Tape Deck or other stereo system to transmit stereo sound with excellent clarity throughout your home, office, yard or camp ground.
USB IO Board

USB IO Board is a tiny spectacular little development board / parallel port replacement featuring PIC18F2455/PIC18F2550 microcontroller. USB IO Board is compatible with Windows / Mac OSX / Linux computers. When attached to Windows IO board will show up as RS232 COM port. You can control 16 individual microcontroller I/O pins by sending simple serial commands. USB IO Board is self-powered by USB port and can provide up to 500mA for electronic projects. USB IO Board is breadboard compatible.

ESR Meter / Transistor Tester Kit
Audiophile Headphone Amplifier Kit
 
ESR Meter / Capacitance / Inductance / Transistor Tester Kit

ESR Meter kit is an amazing multimeter that measures ESR values, capacitance (100pF - 20,000uF), inductance, resistance (0.1 Ohm - 20 MOhm), tests many different types of transistors such as NPN, PNP, FETs, MOSFETs, Thyristors, SCRs, Triacs and many types of diodes. It also analyzes transistor's characteristics such as voltage and gain. It is an irreplaceable tool for troubleshooting and repairing electronic equipment by determining performance and health of electrolytic capacitors. Unlike other ESR Meters that only measure ESR value this one measures capacitor's ESR value as well as its capacitance all at the same time.
Audiophile Headphone Amplifier Kit

Audiophile headphone amplifier kit includes high quality audio grade components such as Burr Brown OPA2134 opamp, ALPS volume control potentiometer, Ti TLE2426 rail splitter, Ultra-Low ESR 220uF/25V Panasonic FM filtering capacitors, High quality WIMA input and decoupling capacitors and Vishay Dale resistors. 8-DIP machined IC socket allows to swap OPA2134 with many other dual opamp chips such as OPA2132, OPA2227, OPA2228, dual OPA132, OPA627, etc. Headphone amplifier is small enough to fit in Altoids tin box, and thanks to low power consumption may be supplied from a single 9V battery.
 

Arduino Prototype Kit
RF Remote Control 433MHz Four Channel
 
Arduino Prototype Kit

Arduino Prototype is a spectacular development board fully compatible with Arduino Pro. It's breadboard compatible so it can be plugged into a breadboard for quick prototyping, and it has VCC & GND power pins available on both sides of PCB. It's small, power efficient, yet customizable through onboard 2 x 7 perfboard that can be used for connecting various sensors and connectors. Arduino Prototype uses all standard through-hole components for easy construction, two of which are hidden underneath IC socket. Board features 28-PIN DIP IC socket, user replaceable ATmega328 microcontroller flashed with Arduino bootloader, 16MHz crystal resonator and a reset switch. It has 14 digital input/output pins (0-13) of which 6 can be used as PWM outputs and 6 analog inputs (A0-A5). Arduino sketches are uploaded through any USB-Serial adapter connected to 6-PIN ICSP female header. Board is supplied by 2-5V voltage and may be powered by a battery such as Lithium Ion cell, two AA cells, external power supply or USB power adapter.
200m 4-Channel 433MHz Wireless RF Remote Control

Having the ability to control various appliances inside or outside of your house wirelessly is a huge convenience, and can make your life much easier and fun. RF remote control provides long range of up to 200m / 650ft and can find many uses for controlling different devices, and it works even through the walls. You can control lights, fans, AC system, computer, printer, amplifier, robots, garage door, security systems, motor-driven curtains, motorized window blinds, door locks, sprinklers, motorized projection screens and anything else you can think of.
 
  Latest Schematics
FM Transmitter with Booster
TDA7000 FM Radio Receiver with LM386 Amplifier
BA1404 Stereo FM Transmitter with Booster
Portable Variable Bench Power Supply 1-32V 0-5A
1 Watt FM Transmitter Booster
Arduino DCC Decoder
Simplest FM Receiver
7W FM Transmitter
Simple Stereo FM Transmitter using an AVR Microcontroller
Stereo FM Receiver
Simple DIY FM Transmitter
50W Power Amplifier with LM3886
BLF147 150W VHF Amplifier
Fully Adjustable Power Supply
Stereo FM Transmitter with BA1404 IC
High Performance Stereo Audio Amplifier using LM3886
1Km FM Transmitter with UA741 Opamp
Easy Crystal Locked FM Transmitter
Adjustable Delay Circuit
DIY Adjustable Bench Power Supply
BA1404 FM Stereo Transmitter with Amplifier
LM350 3A Adjustable Voltage Regulator
1 Watt FM Amplifier
TDA2050 Stereo Audio Power Amplifier
DIY Walkie Talkie
5km FM Transmitter
Bench Lab Power Supply 0-50V 0-5A
Tiny FM Transmitter
3V One Transistor FM Transmitter
FM Music Transmitter

Electronics-DIY.com © 2002-2024. All Rights Reserved.