Electronic Schematics
FM Transmitters
PLL Synthesizers
Stereo Encoders & Decoders
FM Receivers
Audio / Amplifiers
Power Supplies
AC/DC Inverters AC/DC Converters
Battery Chargers
Remote Control
PC Related
Test & Measurement
USB Circuits
Telephone Related
Miscellaneous Circuits
Stepper Motors

 Schematics  >>  FM Receivers

Page 1 of 3:   1   2   3
70 - 120MHz FM Receiver
This simple one chip FM receiver / TV tuner will allow you to receive frequencies from 70 up to 120MHz. With this small receiver it is possible to pickup TV stations, entire 88 - 108MHz FM band, aircraft conversation and many other private transmissions. It is a perfect companion to any FM Transmitter especially if FM band in your area is very crowded. TDA7000 receiver offers very good sensitivity therefore it will even allow you to pickup weaker signals that cannot be heard on conventional FM receivers.

Simple FM Receiver
With the TDA 7000 you can build an FM radio with a minimum of components; most of them so easy to manage...like the ceramic capacitors that do not require polarization...and only two resistors. The components you will employ will be of small dimensions and low cost. Even the integrated circuit itself, the TDA 7000, is not of great cost.

27 MHz Receiver
This is a simple RF receiver mainly for low-distance digital radio receiver application. The analog output of this circuit should be connected to a schmitt-trigger signal conditioning circuit with a proper value capacitor (from collector of T3). L1 for 27Mhz is about 10 turns, 6 mm diameter coil body.

27MHz / 49 MHz Walkie Talkie
Lots of people are requesting walkie-talkie and RF remote control schematics, so here is some. Building these circuits needs special equipment and expertise in RF circuits. If you are going to experiment with these circuits, please note that I did not build them, and I am not able to help you with any details. If you have no experience in RF, I suggest that you choose the easy way and buy a ready-made RF module. Otherwise you can realize you have an exact copy of a circuit in your hand, still it doesn't work the way it should.

4 Transistor FM Receiver
This is a pocket sized receiver I built in 1994. The idea was to make a simple but useable receiver running off 3V. My previous 6 transistor receiver was more bulky, requiring 12V. This meant 10 x AA cells. I designed and made a PCB, and constructed a small aluminium case to keep the receiver as comact as possible. There is nothing unusual with this design. The detector uses a simple Colpitts oscillator and is of a type commonly used in other super regen receivers. Of course it is self quenched. Sensitivity with this type of detector is relatively low, but it's simple and easy to get working. As always, I provided a regeneration control to set the optimum operating point; ie. max sensitivity and minimum SCA/stereo subcarrier beat.

Aircraft / Airplane Radio Receiver
The communications between commercial aircraft and the ground can be interesting, amusing and sometimes even disturbing. However radios that receive the approximately 220MHz to 400MHz band commonly used for aircraft (both military and commercial) are not easily found. And scanners can be complicated, large and expensive. With an easy to build circuit such as this one, everyone can enjoy listening in on these conversations.

AM Radio built around LM555
AM radio built around 555 timer chip. The only active device (silicon, germanium, or otherwise) is the LM555. The tuning is accomplished with an inductor and a capacitor, and the LM555 acts as an AM demodulator and class-D power amplifier to drive the speaker. You may be wondering how all this is accomplished with a 555. Here’s how the circuit works: The AM radio signal is tuned by inductor L, which is 300 turns of wire on a 1/2 inch diameter cardboard tube made out of a paper roll, along with the 100pF variable capacitor. One end of the parallel configuration of L and C connects to an antenna (surprisingly long!) and the other end connects to a ground wire which is tied to the AC outlet ground (old books tell you to ground it to a water pipe). So far this is exactly like an AM crystal radio. The 555 timer is configured as a pulse width modulator in a non-traditional configuration. If I used the standard approach and connected the input to the CV pin, the low impedance of the pin would prevent the circuit from receiving any radio signals. I had to invert the circuit and tie both high impedance analog pins, Threshold and Trigger to the radio signal input. This is the reason why the CMOS version of the 555 timer performs much better than the standard bipolar, which has higher input bias current.

Crystal Detector Radio Receiver Set Varactor Varicap Capacitor Diode Tuned
Traditionally, in a crystal detector radio tuned circuits, a mechanical type variable capacitor is used. For those of you who would like to eliminate this mechanical component, here is a modern version of the classic detector set. This radio, as shown on Figure 1, uses a varactor diode instead of the usual mechanical rotary device. The varactor is also known as a variable capacitance or a varicap diode. It provides an electrically controllable capacitance, which can be used in many different circuits. Varactors are small and inexpensive, which makes their use advantageous in many applications. Its disadvantages are a lower Q (quality), nonlinearity, lower voltage rating and a more limited capacitance range. A tuned circuit with a higher Q has a narrow pass-band that makes it better able to pick out a station of many equally strong. A lower Q tuned circuit has a wider pass band. It allows more neighbor stations through and makes listening to either radio stations frustrating. Frequency change with a varactor diode equipped tuned circuit is as simple as a voltage change.

Direct SW Receiver for AM, AM-SSB & CW Signals
Home » Radio » Direct SW Receiver for AM, AM-SSB & CW Signals Direct SW Receiver for AM, AM-SSB & CW Signals Advertisement SSB stands for Single Side Band, which signifies the amplitude - modulated signal which gets its signal carrier and one sideband suppressed in the transmitter. Carrier suppressing gives huge savings in transmission power (the power necessary to accomplish the desired reach of the signal is significantly smaller than in the conventional - type transmitters), and cancellation of one sideband makes the signal have its spectrum two times narrower, allowing twice as many transmitters as usual to be placed into the same bandwidth.

FM / AM Regenerative Receiver
The following is a design for a separately quench super regen receiver I first tried in early 1992. It worked far better than any other solid state design, so I built a portable version for use during my commuting from the Blue Mountains to Sydney on the train. Running off 10x AA nicads, this gave me a weeks listening before recharging. Only recently, I submitted the basic circuit to Silicon Chip, whereupon it was published in the April 2003 issue (and I won a nice true RMS meter as a result). My portable version differs in that I use varicap tuning, the output transformer has a 1K primary, and the output transistor is a BC108, with bias components to suit. It also uses the headphone lead for the aerial.

Page 1 of 3:   1   2   3

Accurate LC Meter Capacitance Inductance Meter with 16F628 and LCD
Volt Ampere Meter with 16F876 Microcontroller and LCD display
Accurate LC Meter

Build your own Accurate LC Meter (Capacitance Inductance Meter) and start making your own coils and inductors. This LC Meter allows to measure incredibly small inductances making it perfect tool for making all types of RF coils and inductors. LC Meter can measure inductances starting from 10nH - 1000nH, 1uH - 1000uH, 1mH - 100mH and capacitances from 0.1pF up to 900nF. The circuit includes an auto ranging as well as reset switch and produces very accurate and stable readings.
PIC Volt Ampere Meter

Volt Ampere Meter measures voltage of 0-70V or 0-500V with 100mV resolution and current consumption 0-10A or more with 10mA resolution. The meter is a perfect addition to any power supply, battery chargers and other electronic projects where voltage and current must be monitored. The meter uses PIC16F876A microcontroller with 16x2 backlighted LCD.

50MHz 60MHz Frequency Meter / Counter with 16F628 & LCD
1Hz - 2MHz XR2206 Function Generator
60MHz Frequency Meter / Counter

Frequency Meter / Counter measures frequency from 10Hz to 60MHz with 10Hz resolution. It is a very useful bench test equipment for testing and finding out the frequency of various devices with unknown frequency such as oscillators, radio receivers, transmitters, function generators, crystals, etc.
1Hz - 2MHz XR2206 Function Generator

1Hz - 2MHz XR2206 Function Generator produces high quality sine, square and triangle waveforms of high-stability and accuracy. The output waveforms can be both amplitude and frequency modulated. Output of 1Hz - 2MHz XR2206 Function Generator can be connected directly to 60MHz Counter for setting precise frequency output.

BA1404 HI-FI Stereo FM Transmitter
USB IO Board PIC18F2455 / PIC18F2550
BA1404 HI-FI Stereo FM Transmitter

Be "On Air" with your own radio station! BA1404 HI-FI Stereo FM Transmitter broadcasts high quality stereo signal in 88MHz - 108MHz FM band. It can be connected to any type of stereo audio source such as iPod, Computer, Laptop, CD Player, Walkman, Television, Satellite Receiver, Tape Deck or other stereo system to transmit stereo sound with excellent clarity throughout your home, office, yard or camp ground.
USB IO Board

USB IO Board is a tiny spectacular little development board / parallel port replacement featuring PIC18F2455/PIC18F2550 microcontroller. USB IO Board is compatible with Windows / Mac OSX / Linux computers. When attached to Windows IO board will show up as RS232 COM port. You can control 16 individual microcontroller I/O pins by sending simple serial commands. USB IO Board is self-powered by USB port and can provide up to 500mA for electronic projects. USB IO Board is breadboard compatible.

RF Remote Control 433MHz Four Channel
100m 4-Channel 433MHz Wireless RF Remote Control
200m 4-Channel 433MHz Wireless RF Remote Control

Having the ability to control various appliances inside or outside of your house wirelessly is a huge convenience, and can make your life much easier and fun. RF remote control provides long range of up to 200m / 650ft and can find many uses for controlling different devices, and it works even through the walls. You can control lights, fans, AC system, computer, printer, amplifier, robots, garage door, security systems, motor-driven curtains, motorized window blinds, door locks, sprinklers, motorized projection screens and anything else you can think of.
100m 4-Channel 433MHz Wireless RF Remote Control

Four button RF remote is used to turn ON / OFF four different devices independently. Any of the four outputs can be configured to work independently in either toggle or momentary mode. Outputs are buffered by BC549 NPN transistors and can drive low voltage devices directly or be connected to either 5V or 12V relays (or motors) to control appliances that use 110V / 220V mains voltage or any voltage of your choice. Multiple remote systems can be used independently to control more than four appliances in the same location by changing the address code on 433MHz receiver and remote. It is also possible to use several remotes to control the same appliance such as garage door.
 Latest Schematics
Super Simple FM Transmitter
Driving CDROM Stepper Motor with Arduino
6W FM Transmitter 88-108 MHz
Battery Powered Amplifier
12V Fluorescent Light Inverter
Easy FM Transmitter
Curious C-Beeper
Automatic Night Light
LM386 Utility Amplifier
Mini FM Transmitter
Automatic Garden Light
USB Battery Pack
Phone Transmitter
27MHz Walkie Talkie
Plant Water Alarm
4km FM Transmitter
1 Watt FM Transmitter Amplifier
Simple MOSFET Switch
AM Radio Transmitter Using 555 Chip
Adjustable Bench Power Supply
Arduino RF link using 433MHz Transmitter / Receiver modules
MAX038 Generator
Adjustable Constant Current Load
68W LM3886 Amplifier
18W FM Transmitter
Solar Charger for USB Devices
500W Modified Sine Wave Inverter
3.3V and 5V Power Supply
Veronica 1W FM Transmitter
Transformerless Joule Thief

Electronics-DIY.com © 2002-2014. All Rights Reserved.